

Axialkolben-Verstellpumpe A7VK Baureihe 10 Dosierpumpe für Polyurethan-Komponenten

RD 94010

Ausgabe: 04.2013 Ersetzt: 03.2009

•	Nenngröße	12, 28,	55, 107
----------	-----------	---------	---------

Nenndruck 250 bar

Inhalt

Einbauhinweise

Allgemeine Hinweise

- ► Höchstdruck 315 bar
- ► Offene und geschlossene Bauart

Merkmale

▶	Kompakt	te Bauart
---	---------	-----------

- ► Reduzierte Abmessungen und Masse im Vergleich zu A2VK
- ► Anbauflansch, Antriebswelle und Funktionen identisch mit A2VK, dadurch einfach tauschbar
- ► Erhöhter Korrosionsschutz durch spezielle Oberflächenbehandlung
- ► Handverstellung mit Präzisionsanzeige und Klemmvorrichtung gegen unbeabsichtiges Verstellen
- Doppelte Wellenabdichtung aus Spezialwerkstoff und Spülkammer zur Schadenserkennung sowie zum Schutz der Umwelt
- Verbesserter volumetrischer Wirkungsgrad durch robustes Triebwerk in bewährter Kegelkolbentechnologie
- ▶ Optional mit angebautem Hochdruckbegrenzungsventil
- ▶ Niedriger Geräuschpegel

Geschlossene Bauart (A7VKG)

- Hoher zulässiger Fülldruck für hochviskose Medien durch Trennung von Zulaufkanal und Pumpengehäuse
- ► Leckflüssigkeit muss abgeführt werden

Offene Bauart (A7VKO)

► Der Gehäuseraum ist mit dem Saugraum verbunden. Eine Leckflüssigkeitsleitung vom Gehäuse zum Tank ist nicht erforderlich

Hinweis

Die Axialkolbenpumpe ist zur Förderung von Polyurethan-Komponenten (Polyol und Isocyanat) zugelassen.

Typenschlüssel	2
Betriebsdruckbereich	3
Druckflüssigkeiten	4
Technische Daten	4
Verstellung MA	5
Abmessungen Nenngröße 12 – offene Bauart	6
Abmessungen Nenngröße 12 – geschlossene Bauart	8
Abmessungen Nenngröße 28 – offene Bauart	10
Abmessungen Nenngröße 28 – geschlossene Bauart	12
Abmessungen Nenngröße 55 – offene Bauart	14
Abmessungen Nenngröße 55 – geschlossene Bauart	16
Abmessungen Nenngröße 107 – offene Bauart	18
Abmessungen Nenngröße 107 – geschlossene Bauart	20

Hochdruckbegrenzungsventil direktgesteuert

22

23

24

Typenschlüssel

01	02	03	04		05	06	07	08	09	10	11	12	2		13
A7VK			MA	/	10	М		S			5			-	
		•							,						
	eneinhei														
01 Schr	ägachsen	bauart, ve	rstellbar,	Nenndruc	k 250 bar	, Höchsto	Iruck 315	bar							A7VK
Betriebsa	art											,			
02 Pum	pe, gesch	lossene B	auart												G
Pum	pe, offene	Bauart													0
Nenngröß	Ben (NG)														_
03 Geor	metrische	s Verdrän	gungsvolu	men, sieh	e Werteta	belle 4					012	028	055	107]
Regel- un	d Verstel	leinrichtu	ngen												
		anuell mit													MA
Baureihe						-									
	eihe 1, In	dex 0													10
			und Befes	tigungege	winda										
			inde mit F			DIN 3852	<u> </u>								М
l		J.1140080 11		Tomatom	11118 114011	2114 0002	_								<u> </u>
Orehricht		riebwelle								echts (Sta	andard)				ь
O/ Bei E	SIICK aui i	nebwene								nks (Opti					R
										iiks (Opti	011)				<u> </u>
Dichtung			\A/-!!!:-	h. 4 i	OTEE (D-										
08 FKM	(Fluor-Ka	utschuk),	Wellendic	ntring in i	PIFE (POI	ytetrafiuc	oretnylen)								S
Anbaufla											012	028	055	107	
		019-2 - 4-	Loch			-	80-4				•	-	-	-	KG
(taus	schbar zu	AZVK)				-	100-4				-	•	-	-	LG
						-	125-4				-	-	•	-	MS
							160-4					-		•	PS
Triebwell	en										012	028	055	107	
10 Zylin	drische V	/elle mit P	assfeder r	nach DIN 6	6885	-	ø20				•	-	-	-	Р3
						-	ø25				-	•	-	-	P5
						-	ø30				-	-	•	-	P6
							ø40				_	-	-	•	P9
Anschlus	splatte fi	ir Arbeits	leitungen												
11 Gesc	hlossene	Bauart: G	ewindean	schlüsse <i>I</i>	4 und B ,	seitlich ge	egenüberl	iegend							5
Offer	ne Bauart	: Gewinde	anschlüss	e A und S	, seitlich	gegenübe	erliegend								
Druckbeg	grenzungs	sventile													
12 Ohne	e Druckbe	grenzung	sventile (S	standard)											0000
Hoch	ndruckbeg	grenzungsv	ventile dir	ektgesteu	ert, fest e	eingestellt	t, ∆p-Einst	ellwerte [[bar] optic	nal	100				A100
											150				A150
1															

Standard-/Sonderausführung

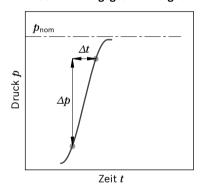
ſ	13	Standardausführung	0	l
		Sonderausführung	S	1

200

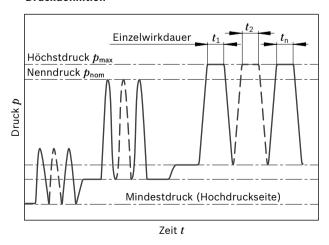
230

250

A200


A230 A250

• = Lieferbar • = Auf Anfrage - = Nicht lieferbar


Betriebsdruckbereich

Druck am Anschluss für Arbeitsleitung (Hochdruckseite)	A oder B	Definition				
Nenndruck p_{nom}	250 bar absolut	Der Nenndruck entspricht dem maximalen Auslegungsdruck.				
Höchstdruck $p_{\sf max}$	315 bar absolut	Der Höchstdruck entspricht dem maximalen Betriebsdruck innerhalb der Einzel-				
Einzelwirkdauer	10 s	wirkdauer. Die Summe der Einzelwirkdauern darf die Gesamtwirkdauer nicht über schreiten.				
Gesamtwirkdauer	50 h					
Mindestdruck	10 bar absolut	Mindestdruck auf der Hochdruckseite (A oder B) der erforderlich ist, um eine Beschädigung der Axialkolbeneinheit zu verhindern.				
Druckänderungsgeschwindigkeit $R_{A\;max}$	9000 bar/s	Maximal zulässige Druckaufbau- und Druckabbaugeschwindigkeit bei einer Druckänderung über den gesamten Druckbereich.				
Geschlossene Bauart Druck am Anschluss für Arbeitsleitung	A oder B (Nieder	rdruckseite)				
Minimaler Fülldruck	> 1 bar absolut	Abhängig von Viskosität und Volumenstrom muss der Fülldruck so angepasst werden,				
Maximaler Fülldruck	30 bar absolut	dass eine vollständige Füllung der Niederdruckseite der Pumpe sichergestellt ist.				
Offene Bauart						
Druck am Sauganschluss S (Eingang)						
Minimaler Fülldruck	1 bar absolut	Abhängig von Viskosität und Volumenstrom muss der Fülldruck so angepasst werden,				
Maximaler Fülldruck	6 bar absolut	dass eine vollständige Füllung der Niederdruckseite der Pumpe sichergestellt ist.				

▼ Druckänderungsgeschwindigkeit R_{A max}

▼ Druckdefinition

Gesamtwirkdauer = $t_1 + t_2 + ... + t_n$

Hinweis

Werte für andere Druckflüssigkeiten bitte Rücksprache.

Wellendichtring

Zulässige Druckbelastung

Die Standzeit des Wellendichtrings wird beeinflusst von der Drehzahl der Pumpe, dem Gehäusedruck (Leckflüssigkeitsdruck) und der Beschaffenheit des Fördermediums. Es sind kurzzeitige ($t < 0.1~{\rm s}$) Druckspitzen bis 10 bar absolut erlaubt. Je häufiger die Druckspitzen auftreten, desto kürzer wird die Standzeit des Wellendichtringes.

Hinweis

Zur Überwachung der Leckagefreiheit der Wellendichtringe empfehlen wir eine Sperrflüssigkeitsüberwachung an den Anschlüssen **U1** bis **U4** anzuschließen.

Der minimale Druck im Gehäuse muss gleich oder größer sein wie der Sperrflüssigkeitsdruck. Der Sperrflüssigkeitsdruck muss gleich oder größer sein als der äußere Druck auf den außenliegenden Wellendichtring.

Druckflüssigkeiten

Die Pumpe ist zur Förderung und Dosierung von Polyurethan-Komponenten (Polyol und Isocyanat) zugelassen. Halten Sie für andere Druckflüssigkeiten Rücksprache mit dem Bosch Rexroth-Service.

Betriebsviskositätsbereich

Für Grenzbedingungen gelten folgende Werte:

- $\nu_{min} = 5 \text{ mm}^2/\text{s}$
- $\nu_{max} = 1600 \text{ mm}^2/\text{s}$

Bei abweichenden Werten bitte Rücksprache. Bei Einsatz von hochviskosen Medien ist eine Lagerquerspülung zu empfehlen. Empfohlene Spülmenge:

Nenngröße	[L/min]
12	2.5
28	4
55	4
107	8

Betriebstemperaturbereich

- ▶ Optimaler Betriebstemperaturbereich *t* = 10 bis 50 °C
- Maximale Betriebstemperatur t_{max} = 80 °C

Die zulässige Betriebstemperatur ist abhängig von der Schmierfähigkeit der jeweiligen Druckflüssigkeit. Die maximale Betriebstemperatur darf auch örtlich nicht überschritten werden.

Filterung der Druckflüssigkeit

Der Filter ist so anzuordnen, dass nur gefilterte Druckflüssigkeit in die Pumpe gelangt. Je feiner die Filterung desto höher die Lebensdauer der Axialkolbenpumpe.

▶ Wir empfehlen eine Filterfeinheit $\eta_{abs} \le 125 \mu m$

Leckflüssigkeit bei geschlossener Bauart

Die Pumpenanschlüsse **A** und **B** sind vom Gehäuseraum getrennt. Die Leckflüssigkeit muss über die Anschlüsse T_1 oder T_2 mit einer separaten Leitung abgeführt werden.

► Maximaler Leckflüssigkeitsdruck $p_{L \text{ max}}$ = 6 bar

Leckflüssigkeit bei offener Bauart

Der Gehäuseraum ist mit dem Saugraum verbunden. Der Druck am Anschluss **S** liegt auch im Gehäuse an und darf 6 bar nicht überschreiten. Eine Leckflüssigkeitsleitung vom Gehäuse zum Tank ist nicht erforderlich (Anschluss T_1 , T_2 verschlossen).

Technische Daten

Nenngröße		NG		12	28	55	107	
Verdrängungsvolumen geometrisch, pro Umdrehung			$V_{g\;max}$	cm ³	11.6	28.1	54.8	107
			V_{gmin}	cm ³	0	0	0	0
Volumenstrom	bei V_{gmax} und Drehzahl n	n = 1500 min ⁻¹	q_{v}	L/min	17.4	42.2	82.2	160.5
		n = 1800 min ⁻¹	q_{v}	L/min	20.9	50.6	98.6	192.6
Leistung	bei $V_{\mathrm{g \ max}}, \Delta p$ = 250 bar und Drehzahl n	n = 1500 min ⁻¹	P	kW	7.3	17.6	34.2	66.9
		n = 1800 min ⁻¹	P	kW	8.7	21.1	41.1	80.3
Drehmoment	bei $V_{\rm gmax}$ und Δp = 250 bar		T	Nm	46.2	111.8	218.0	425.7
Masse (ca.)			m	kg	11.7	22.1	31	55

Ermittlung der Kenngrößen

Formeln		
Volumenstrom	$q_{\rm v} = \frac{V_{\rm g} \cdot n \cdot \eta_{\rm v}}{1000}$	[L/min]
Drehmoment	$T = \frac{V_{\rm g} \cdot \Delta p}{20 \cdot \pi \cdot \eta_{\rm mh}}$	[Nm]
Leistung	$P = \frac{2 \pi \cdot T \cdot n}{60000} = \frac{q_{\text{v}} \cdot \Delta p}{600 \cdot \eta_{\text{t}}}$	— [kW]

Hinweis

► Theoretische Werte, ohne Wirkungsgrade und Toleranzen; Werte gerundet

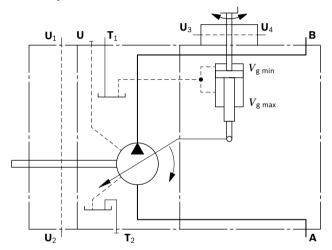
Legende		
V_{g}	=	Verdrängungsvolumen pro Umdrehung [cm³]
Δp	=	Differenzdruck [bar]
n	=	Drehzahl [min ⁻¹]
$\eta_{\scriptscriptstyle ee}$	=	Volumetrischer Wirkungsgrad
η_{mh}	=	Mechanisch-hydraulischer Wirkungsgrad
η_{t}	=	Gesamtwirkungsgrad ($\eta_{\rm t}$ = $\eta_{\rm v}$ • $\eta_{\rm mh}$)

Verstellung MA

Durch das Drehen des Handrades wird über eine Gewindespindel das Pumpentriebwerk und somit der Volumenstrom stufenlos im Bereich von $V_{\rm g\ min}$ bis $V_{\rm g\ max}$ verstellt.

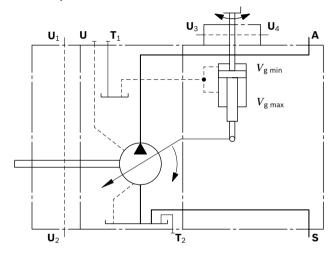
Eine serienmäßige Klemmvorrichtung verhindert ein unbeabsichtiges Verstellen.

Die Präzisionsverstellanzeige ist im Handrad integriert.

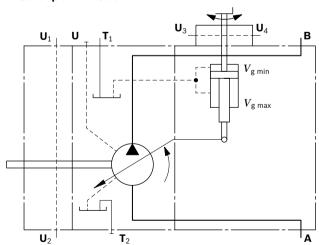

Nenngröße		12	28	55	107
Umdrehung am Handrad $V_{g\;min}$ bis $V_{g\;max}$	ca. U _s	23	30	40	50
Maximales Drehmoment am Handrad $T_{ m max}$	ca. Nm	3.5	3.5	3.5	3.5

Durchflussrichtung

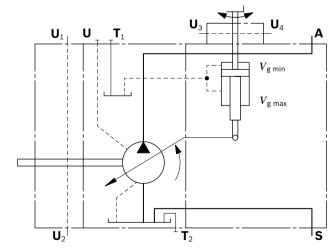
Drehrichtung bei Blick auf Triebwelle					
Bauart	rechts	links			
Geschlossen	A nach B	B nach A			
Offen	S nach A	S nach A			


Geschlossene Bauart

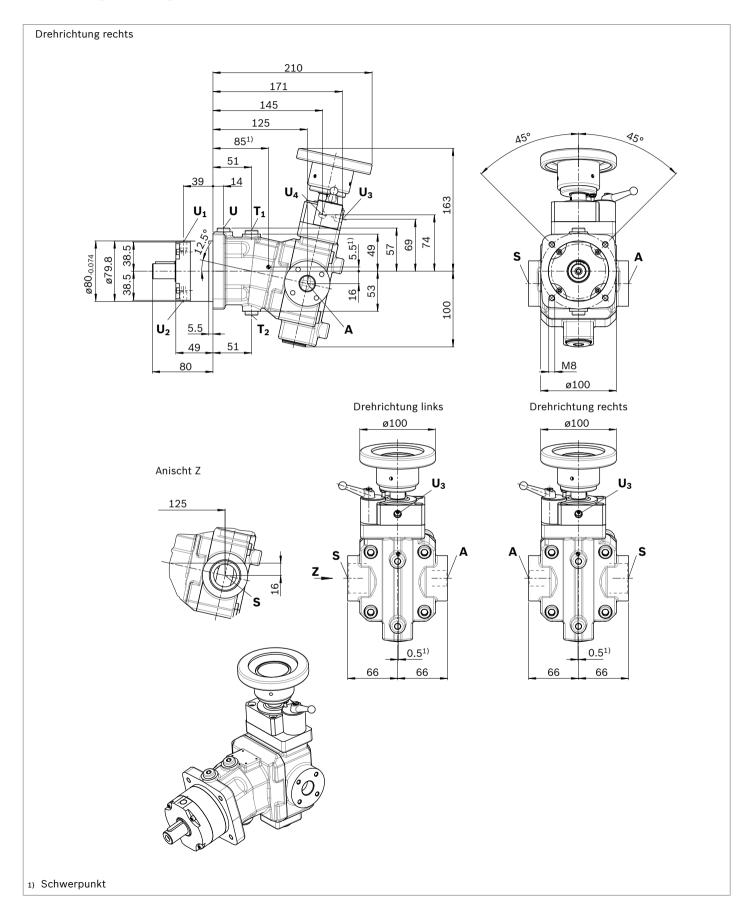
▼ Schaltplan Rechtslauf

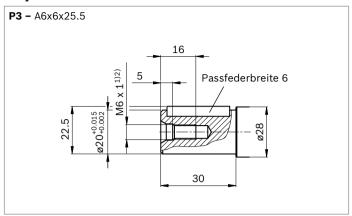


Offene Bauart


▼ Schaltplan Rechtslauf

▼ Schaltplan Linkslauf




▼ Schaltplan Linkslauf

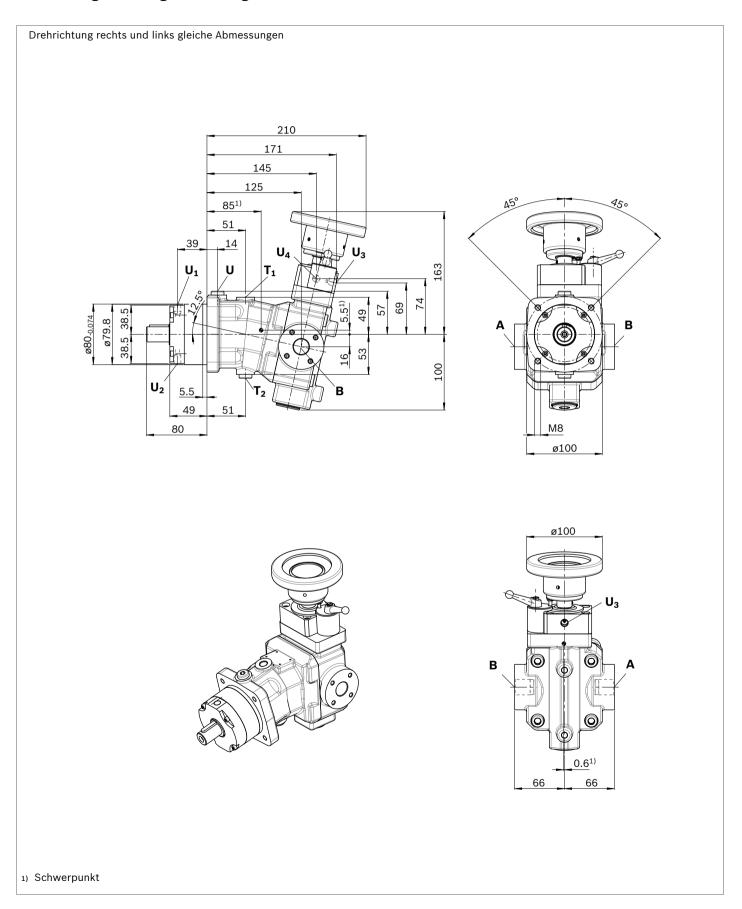
6

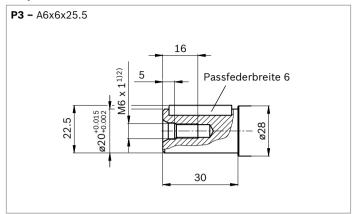
Abmessungen Nenngröße 12 - offene Bauart

Anschlüss	e	Norm ⁴⁾	Größe ²⁾	p _{max} [bar] ³⁾	Zustand ⁶⁾
Α	Arbeitsanschluss	DIN 3852	M22 x 1.5; 14 tief	315	Ο
S	Saug-/Füllanschluss	DIN ISO 228	G1 1/4; 20 tief	6	0
T ₁	Leckflüssigkeit	DIN 3852	M12 x 1.5; 12 tief	6	Х
T ₂	Leckflüssigkeit	DIN 3852	M12 x 1.5; 12 tief	6	Х
U	Lagerspülung	DIN 3852	M12 x 1.5; 12 tief	6	Х
U ₁ , U ₂	Sperrflüssigkeit	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾	0
U ₃ , U ₄	Sperrflüssigkeit	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾	0

¹⁾ Zentrierbohrung nach DIN 332 (Gewinde nach DIN 13)

²⁾ Für die maximalen Anziehdrehmomente sind die allgemeinen Hinweise auf 24 zu beachten.


³⁾ Anwendungsspezifisch k\u00f6nnen kurzzeitig Druckspitzen auftreten. Bei der Auswahl von Messger\u00e4ten und Armaturen beachten.


⁴⁾ Die Ansenkung kann tiefer sein als in der Norm vorgesehen.

⁵⁾ Der minimale Druck im Gehäuse muss gleich oder größer sein als der Sperrflüssigkeitsdruck. Der Sperrflüssigkeitsdruck muss gleich oder größer sein als der äußere Druck auf den außenliegenden Wellendichtring.

 ⁶⁾ O = Muss angeschlossen werden (im Lieferzustand verschlossen)
 X = Verschlossen (im Normalbetrieb)

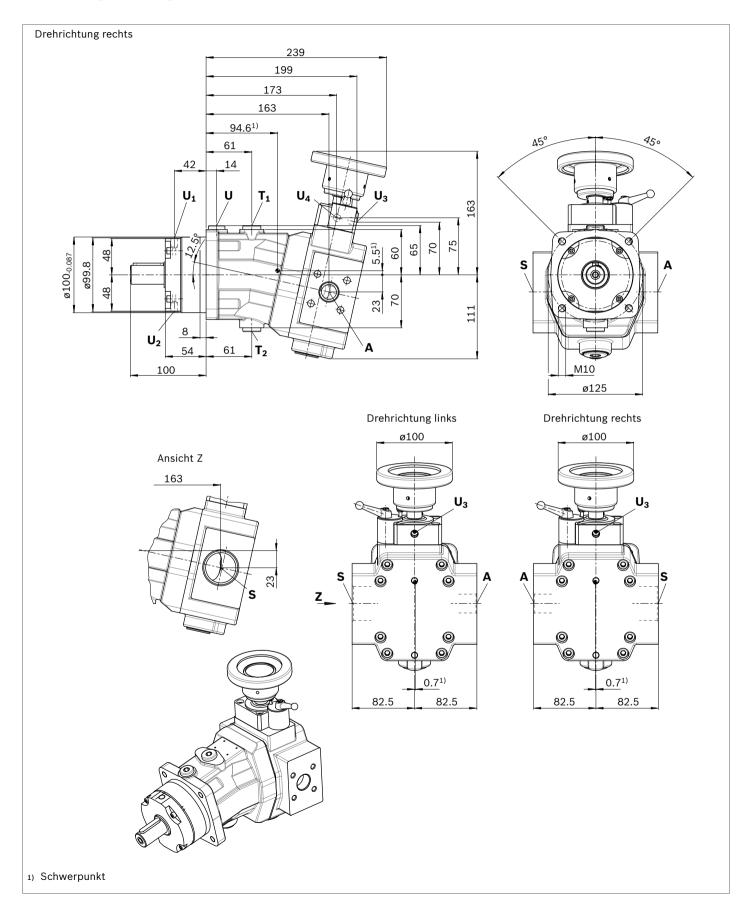
Abmessungen Nenngröße 12 - geschlossene Bauart

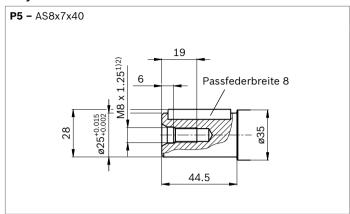
Anschlüsse	e	Norm ⁴⁾	Größe ²⁾	p _{max} [bar] ³⁾		Zustand ⁷⁾
Α	Arbeitsanschluss	DIN 3852	M22 x 1.5; 14 tief	Rechtslauf	30	0
				Linkslauf	315	
В	Arbeitsanschluss	DIN 3852	M22 x 1.5; 14 tief	Rechtslauf	315	0
				Linkslauf	30	_
T ₁	Leckflüssigkeit	DIN 3852	M12 x 1.5; 12 tief	6		O ⁶⁾
T ₂	Leckflüssigkeit	DIN 3852	M12 x 1.5; 12 tief	6		X ₆)
U	Lagerspülung	DIN 3852	M12 x 1.5; 12 tief	6		X
U ₁ , U ₂	Sperrflüssigkeit	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾		0
U ₃ , U ₄	Sperrflüssigkeit	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾		0

¹⁾ Zentrierbohrung nach DIN 332 (Gewinde nach DIN 13)

²⁾ Für die maximalen Anziehdrehmomente sind die allgemeinen Hinweise auf 24 zu beachten.

³⁾ Anwendungsspezifisch können kurzzeitig Druckspitzen auftreten. Bei der Auswahl von Messgeräten und Armaturen beachten.


⁴⁾ Die Ansenkung kann tiefer sein als in der Norm vorgesehen.


⁵⁾ Der minimale Druck im Gehäuse muss gleich oder größer sein als der Sperrflüssigkeitsdruck. Der Sperrflüssigkeitsdruck muss gleich oder größer sein als der äußere Druck auf den außenliegenden Wellendichtring.

⁶⁾ Abhängig von Einbaulage, muss T_1 oder T_2 angeschlossen werden (siehe auch Einbauhinweise auf 23).

 ⁷⁾ O = Muss angeschlossen werden (im Lieferzustand verschlossen)
 X = Verschlossen (im Normalbetrieb)

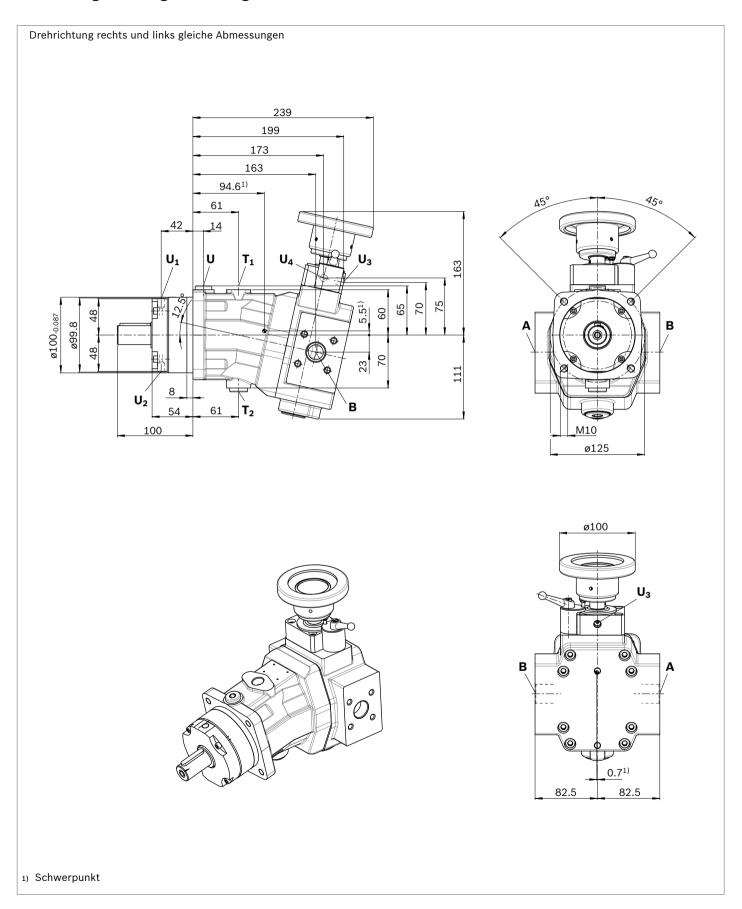
Abmessungen Nenngröße 28 - offene Bauart

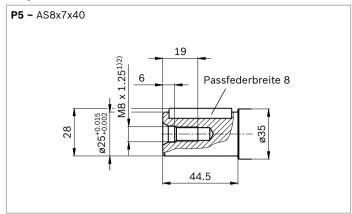
Anschlüss	e	Norm ⁴⁾	Größe ²⁾	p _{max} [bar] ³⁾	Zustand ⁶⁾
Α	Arbeitsanschluss	DIN 3852	M27 x 2; 16 tief	315	0
s	Saug-/Füllanschluss	DIN ISO 228	G1 1/2; 20 tief	6	0
T ₁	Leckflüssigkeit	DIN 3852	M18 x 1.5; 12 tief	6	Х
T ₂	Leckflüssigkeit	DIN 3852	M18 x 1.5; 12 tief	6	Х
U	Lagerspülung	DIN 3852	M16 x 1.5; 12 tief	6	Х
U ₁ , U ₂	Sperrflüssigkeit	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾	0
U ₃ , U ₄	Sperrflüssigkeit	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾	0

¹⁾ Zentrierbohrung nach DIN 332 (Gewinde nach DIN 13)

²⁾ Für die maximalen Anziehdrehmomente sind die allgemeinen Hinweise auf 24 zu beachten.

³⁾ Anwendungsspezifisch können kurzzeitig Druckspitzen auftreten. Bei der Auswahl von Messgeräten und Armaturen beachten.


⁴⁾ Die Ansenkung kann tiefer sein als in der Norm vorgesehen.


⁵⁾ Der minimale Druck im Gehäuse muss gleich oder größer sein als der Sperrflüssigkeitsdruck. Der Sperrflüssigkeitsdruck muss gleich oder größer sein als der äußere Druck auf den außenliegenden Wellendichtring.

 ⁶⁾ O = Muss angeschlossen werden (im Lieferzustand verschlossen)
 X = Verschlossen (im Normalbetrieb)

12

Abmessungen Nenngröße 28 - geschlossene Bauart

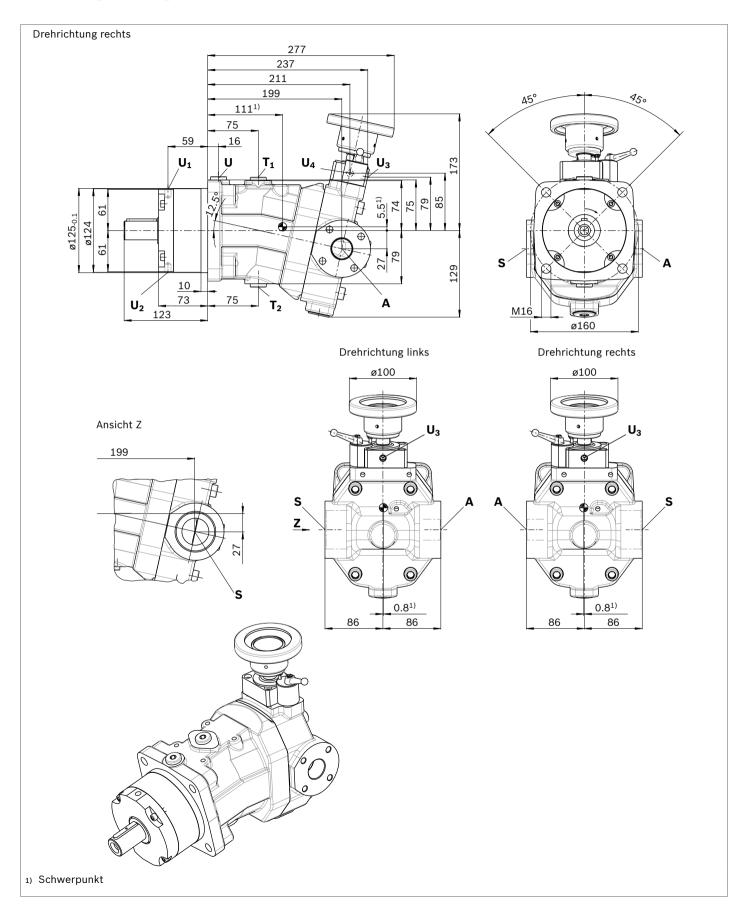
Anschlüsse	e	Norm ⁴⁾	Größe ²⁾	p _{max} [bar] ³⁾		Zustand ⁷⁾
Α	Arbeitsanschluss	DIN 3852	M27 x 2; 16 tief	Rechtslauf	Rechtslauf 30	
				Linkslauf	315	
В	Arbeitsanschluss	DIN 3852	M27 x 2; 16 tief	Rechtslauf 315		0
				Linkslauf	30	
T ₁	Leckflüssigkeit	DIN 3852	M18 x 1.5; 12 tief	6		O ⁶⁾
T ₂	Leckflüssigkeit	DIN 3852	M18 x 1.5; 12 tief	6		X ₆)
U	Lagerspülung	DIN 3852	M16 x 1.5; 12 tief	6		Х
U ₁ , U ₂	Sperrflüssigkeit	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾		0
U ₃ , U ₄	Sperrflüssigkeit	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾		0

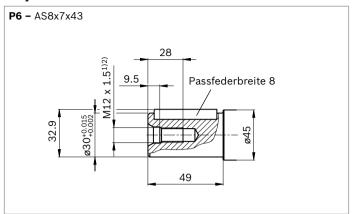
¹⁾ Zentrierbohrung nach DIN 332 (Gewinde nach DIN 13)

²⁾ Für die maximalen Anziehdrehmomente sind die allgemeinen Hinweise auf 24 zu beachten.

³⁾ Anwendungsspezifisch können kurzzeitig Druckspitzen auftreten. Bei der Auswahl von Messgeräten und Armaturen beachten.

 $^{^{4)}}$ Die Ansenkung kann tiefer sein als in der Norm vorgesehen.


⁵⁾ Der minimale Druck im Gehäuse muss gleich oder größer sein als der Sperrflüssigkeitsdruck. Der Sperrflüssigkeitsdruck muss gleich oder größer sein als der äußere Druck auf den außenliegenden Wellendichtring.


 $_{0}$ Abhängig von Einbaulage, muss \mathbf{T}_{1} oder \mathbf{T}_{2} angeschlossen werden (siehe auch Einbauhinweise auf 23).

 ⁷⁾ O = Muss angeschlossen werden (im Lieferzustand verschlossen)
 X = Verschlossen (im Normalbetrieb)

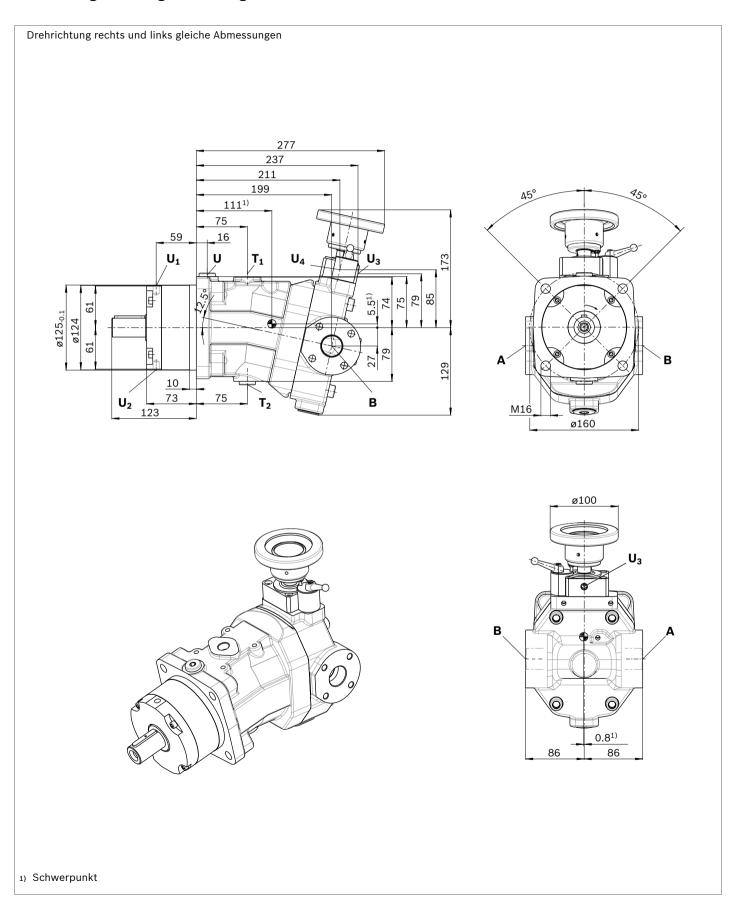
14

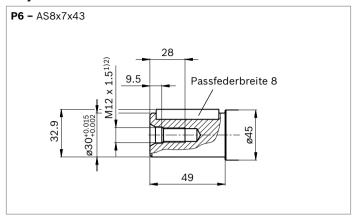
Abmessungen Nenngröße 55 - offene Bauart

Anschlüss	e	Norm ⁴⁾	Größe ²⁾	p _{max} [bar] ³⁾	Zustand ⁶⁾
Α	Arbeitsanschluss	DIN 3852	M33 x 2; 18 tief	315	0
S	Saug-/Füllanschluss	DIN ISO 228	G2; 27 tief	6	0
T ₁	Leckflüssigkeit	DIN 3852	M18 x 1.5; 12 tief	6	Х
T ₂	Leckflüssigkeit	DIN 3852	M18 x 1.5; 12 tief	6	Х
U	Lagerspülung	DIN 3852	M18 x 1.5; 12 tief	6	Х
U ₁ , U ₂	Sperrflüssigkeit	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾	0
U ₃ , U ₄	Sperrflüssigkeit	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾	0

¹⁾ Zentrierbohrung nach DIN 332 (Gewinde nach DIN 13)

²⁾ Für die maximalen Anziehdrehmomente sind die allgemeinen Hinweise auf 24 zu beachten.


³⁾ Anwendungsspezifisch können kurzzeitig Druckspitzen auftreten. Bei der Auswahl von Messgeräten und Armaturen beachten.


⁴⁾ Die Ansenkung kann tiefer sein als in der Norm vorgesehen.

⁵⁾ Der minimale Druck im Gehäuse muss gleich oder größer sein als der Sperrflüssigkeitsdruck. Der Sperrflüssigkeitsdruck muss gleich oder größer sein als der äußere Druck auf den außenliegenden Wellendichtring.

 ⁶⁾ O = Muss angeschlossen werden (im Lieferzustand verschlossen)
 X = Verschlossen (im Normalbetrieb)

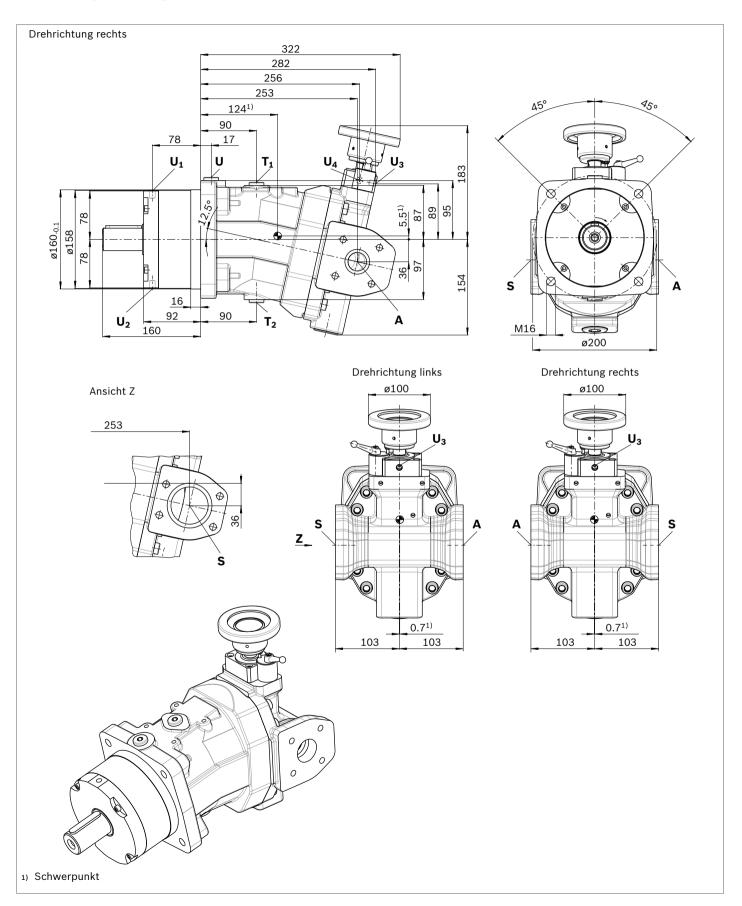
Abmessungen Nenngröße 55 - geschlossene Bauart

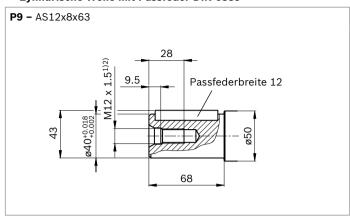
Anschlüss	e	Norm ⁴⁾	Größe ²⁾	p _{max} [bar] ³⁾		Zustand ⁷⁾
Α	Arbeitsanschluss	DIN 3852	M33 x 2; 18 tief	Rechtslauf 30		0
				Linkslauf	315	
В	Arbeitsanschluss	DIN 3852	M33 x 2; 18 tief	Rechtslauf	315	0
				Linkslauf	30	_
T ₁	Leckflüssigkeit	DIN 3852	M18 x 1.5; 12 tief	6		O ⁶⁾
T ₂	Leckflüssigkeit	DIN 3852	M18 x 1.5; 12 tief	6		X ₆)
U	Lagerspülung	DIN 3852	M18 x 1.5; 12 tief	6		X
U ₁ , U ₂	Sperrflüssigkeit	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾		0
U ₃ , U ₄	Sperrflüssigkeit	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾		0

¹⁾ Zentrierbohrung nach DIN 332 (Gewinde nach DIN 13)

²⁾ Für die maximalen Anziehdrehmomente sind die allgemeinen Hinweise auf 24 zu beachten.

³⁾ Anwendungsspezifisch können kurzzeitig Druckspitzen auftreten. Bei der Auswahl von Messgeräten und Armaturen beachten.


⁴⁾ Die Ansenkung kann tiefer sein als in der Norm vorgesehen.


⁵⁾ Der minimale Druck im Gehäuse muss gleich oder größer sein als der Sperrflüssigkeitsdruck. Der Sperrflüssigkeitsdruck muss gleich oder größer sein als der äußere Druck auf den außenliegenden Wellendichtring.

⁶⁾ Abhängig von Einbaulage, muss T_1 oder T_2 angeschlossen werden (siehe auch Einbauhinweise auf 23).

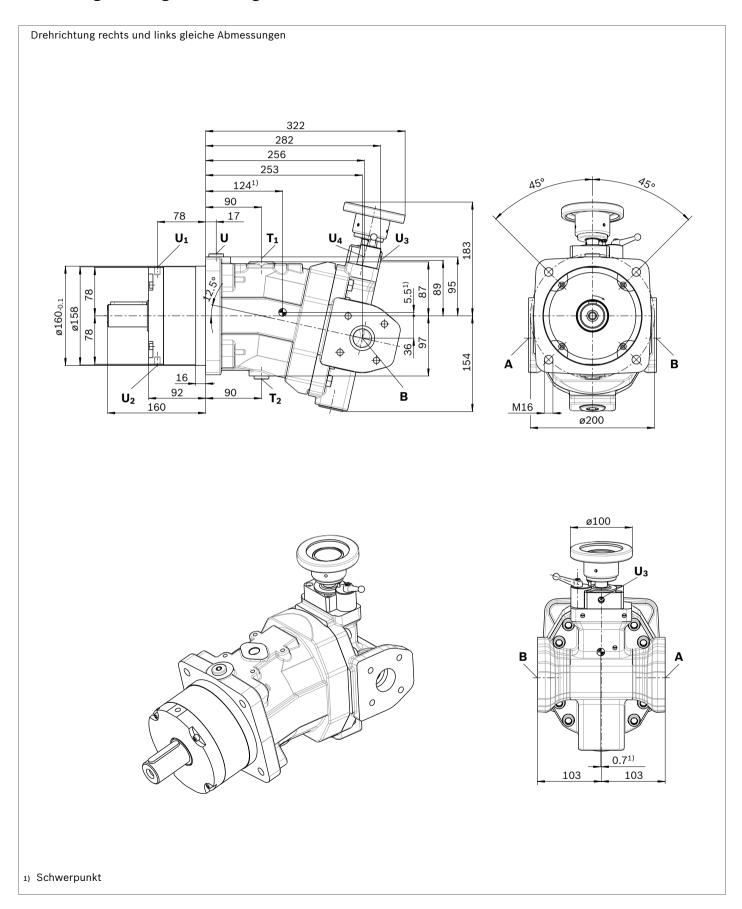
 ⁷⁾ O = Muss angeschlossen werden (im Lieferzustand verschlossen)
 X = Verschlossen (im Normalbetrieb)

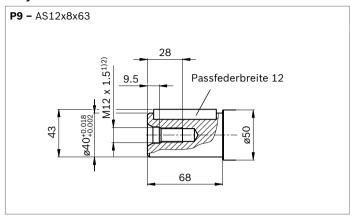
Abmessungen Nenngröße 107 - offene Bauart

Anschlüss	e	Norm ⁴⁾	Größe ²⁾	p _{max} [bar] ³⁾	Zustand ⁶⁾
Α	Arbeitsanschluss	DIN 3852	M42 x 2; 20 tief	315	0
s	Saug-/Füllanschluss	DIN ISO 228	G2 1/2; 30 tief	6	0
T ₁	Leckflüssigkeit	DIN 3852	M18 x 1.5; 12 tief	6	Х
T ₂	Leckflüssigkeit	DIN 3852	M18 x 1.5; 12 tief	6	Χ
U	Lagerspülung	DIN 3852	M18 x 1.5; 12 tief	6	Х
U ₁ , U ₂	Sperrflüssigkeit	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾	0
U ₃ , U ₄	Sperrflüssigkeit	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾	0

¹⁾ Zentrierbohrung nach DIN 332 (Gewinde nach DIN 13)

²⁾ Für die maximalen Anziehdrehmomente sind die allgemeinen Hinweise auf 24 zu beachten.


³⁾ Anwendungsspezifisch können kurzzeitig Druckspitzen auftreten. Bei der Auswahl von Messgeräten und Armaturen beachten.


⁴⁾ Die Ansenkung kann tiefer sein als in der Norm vorgesehen.

⁵⁾ Der minimale Druck im Gehäuse muss gleich oder größer sein als der Sperrflüssigkeitsdruck. Der Sperrflüssigkeitsdruck muss gleich oder größer sein als der äußere Druck auf den außenliegenden Wellendichtring.

 ⁶⁾ O = Muss angeschlossen werden (im Lieferzustand verschlossen)
 X = Verschlossen (im Normalbetrieb)

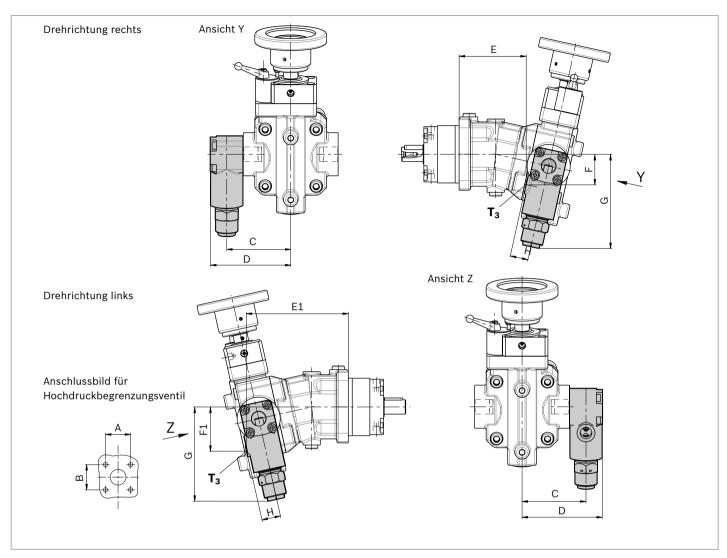
Abmessungen Nenngröße 107 - geschlossene Bauart

Anschlüsse	e	Norm ⁴⁾	Größe ²⁾	p _{max} [bar] ³⁾		Zustand ⁷⁾
Α	Arbeitsanschluss	DIN 3852	M42 x 2; 20 tief	Rechtslauf	30	Ο
				Linkslauf	315	
В	Arbeitsanschluss	DIN 3852	M42 x 2; 20 tief	Rechtslauf	315	0
				Linkslauf	30	
T ₁	Leckflüssigkeit	DIN 3852	M18 x 1.5; 12 tief	6		O ⁶⁾
T ₂	Leckflüssigkeit	DIN 3852	M18 x 1.5; 12 tief	6		X ⁶⁾
U	Lagerspülung	DIN 3852	M18 x 1.5; 12 tief	6		Х
U ₁ , U ₂	Sperrflüssigkeit	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾		0
U ₃ , U ₄	Sperrflüssigkeit	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾		0

¹⁾ Zentrierbohrung nach DIN 332 (Gewinde nach DIN 13)

²⁾ Für die maximalen Anziehdrehmomente sind die allgemeinen Hinweise auf 24 zu beachten.

³⁾ Anwendungsspezifisch können kurzzeitig Druckspitzen auftreten. Bei der Auswahl von Messgeräten und Armaturen beachten.


⁴⁾ Die Ansenkung kann tiefer sein als in der Norm vorgesehen.

⁵⁾ Der minimale Druck im Gehäuse muss gleich oder größer sein als der Sperrflüssigkeitsdruck. Der Sperrflüssigkeitsdruck muss gleich oder größer sein als der äußere Druck auf den außenliegenden Wellendichtring.

⁶⁾ Abhängig von Einbaulage, muss T_1 oder T_2 angeschlossen werden (siehe auch Einbauhinweise auf 23).

 ⁷⁾ O = Muss angeschlossen werden (im Lieferzustand verschlossen)
 X = Verschlossen (im Normalbetrieb)

Hochdruckbegrenzungsventil direktgesteuert

NG	A ²⁾	B ²⁾	С	D	E	E1	F	F1	G	Н	Arbeitsanschluss A, B ¹⁾	Rücklaufanschluss T ₃ ¹⁾
12	32	32	89	112	93.5	142	42	53	131	25	M22 x 1.5	M18 x 1.5
28	40	40	107.5	132.5	127.5	181	54	67	143	26	M27 x 2	M22 x 1.5
55	48	48	114	142	157	221	65	79	162	31.5	M33 x 2	M27 x 2
107	60	60	135.5	168	208	272	86	100	206	38.5	M42 x 2	M33 x 2

Differenzdruckeinstellung

Für die Differenzdruckeinstellung stehen folgende Werte zur Auswahl (fest eingestellt):

Vorzugswerte [bar]: 100, 150, 200, 230, 250

Bei fehlender Bestellangabe werden die Ventile auf den Differenzdruck Δp = 250 bar eingestellt.

Anbau

Der Anbau des Hochdruckbegrenzungsventils ist abhängig von der Drehrichtung.

In der offenen Bauart wird das DBV immer am Druckanschluss **A** angebaut. Die Lage des Anschlusses **A** richtet sich hierbei wie beschrieben nach der Drehrichtung. In der geschlossen Bauart erfolgt der Anbau des DBV bei Rechtslauf am Druckanschluss **B** (bei Blick auf Triebwelle – rechte Seite). Bei Linkslauf erfolgt der Anbau am Druckanschluss **A** (bei Blick auf Triebwelle – linke Seite).

DIN 3852, für die maximalen Anziehdrehmomente sind die allgemeinen Hinweise auf 24 zu beachten.

Befestigungsgewinde nach DIN 13, für die maximalen Anziehdrehmomente sind die allgemeinen Hinweise auf 24 zu beachten.

Einbauhinweise

Allgemeines

Die Axialkolbeneinheit muss bei Inbetriebnahme und während des Betriebs mit Druckflüssigkeit gefüllt und entlüftet sein. Die Sperrflüssigkeitsräume müssen mit geeigneter Sperrflüssigkeit befüllt sein. Dies ist auch bei längerem Stillstand zu beachten, da sich die Axialkolbeneinheit über die Hydraulikleitungen entleeren kann.

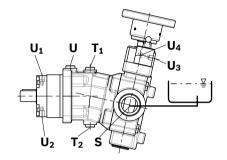
Um günstige Geräuschwerte zu erzielen, sind alle Verbindungsleitungen über elastische Elemente abzukoppeln. Die Saug- und Leckflüssigkeitsleitungen müssen in jedem Betriebszustand unterhalb des minimalen Flüssigkeitsniveaus in den Tank münden.

Geschlossene Bauart

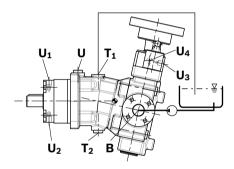
Die Leckflüssigkeit im Gehäuseraum muss über den höchstgelegenen Tankanschluss (\mathbf{T}_1 , \mathbf{T}_2) zum Tank abgeführt werden.

Offene Bauart

Der Leckflüssigkeitsraum ist intern mit dem Saugraum verbunden. Eine Leckflüssigkeitsleitung vom Gehäuse zum Tank ist nicht erforderlich.


Hinweis


Zur Überwachung der Leckagefreiheit der Wellendichtringe empfehlen wir eine Sperrflüssigkeitsüberwachung an den Anschlüssen \mathbf{U}_1 bis \mathbf{U}_4 vorzusehen.


Einbaulage

Standardmäßig ist die Triebwelle beim Einbau waagrecht angeordnet. Weitere Einbaulagen sind nach Rücksprache möglich.

Einbaulage	Entlüften	Befüllen
1 Offene Bauart	T ₁	S

Legende	
В	Arbeitsanschluss
S	Saug-/Füllanschluss
T_1/T_2	Befüllen/Entlüften Leckflüssigkeitsanschluss
\mathbf{U}_1 bis \mathbf{U}_4	Sperrflüssigkeitsanschluss
U	Lagerspülung

Allgemeine Hinweise

- ▶ Die Pumpe A7VK ist zur F\u00f6rderung von Polyurethan-Komponenten in der offenen und geschlossenen Bauart vorgesehen
- ▶ Die Projektierung, Montage und Inbetriebnahme der Axialkolbeneinheit setzen den Einsatz von geschulten Fachkräften voraus.
- ► Lesen Sie vor dem Einsatz der Axialkolbeneinheit die zugehörige Betriebsanleitung gründlich und vollständig. Fordern Sie diese gegebenenfalls bei Bosch Rexroth an.
- Während und kurz nach dem Betrieb besteht an der Axialkolbeneinheit und an dem Druckbegrenzungsventil am Arbeitsanschluss Verbrennungsgefahr. Geeignete Sicherheitsmaßnahmen vorsehen (z. B. Schutzkleidung tragen).
- ► Arbeitsanschlüsse:
 - Die Anschlüsse und Befestigungsgewinde sind für den angegebenen Höchstdruck ausgelegt. Der Maschinenbzw. Anlagenhersteller muss dafür sorgen, dass die Verbindungselemente und Leitungen den vorgesehenen Einsatzbedingungen (Druck, Volumenstrom, Druckflüssigkeit, Temperatur) mit den notwendigen Sicherheitsfaktoren entsprechen.
 - Die Arbeits- und Funktionsanschlüsse sind nur für den Anbau von hydraulischen Leitungen vorgesehen.
- ▶ Die angegebenen Daten und Hinweise sind einzuhalten.

- ► Vor Festlegung Ihrer Konstruktion bitte verbindliche Einbauzeichnungen anfordern.
- ▶ Das Produkt ist nicht in allen Ausführungsvarianten für den Einsatz in einer Sicherheitsfunktion gemäß ISO 13849 freigegeben. Wenn Sie Zuverlässigkeitskennwerte (z. B. MTTF_d) zur funktionalen Sicherheit benötigen, wenden Sie sich an den zuständigen Ansprechpartner bei Bosch Rexroth.
- ► In der Hydraulikanlage ist ein Druckbegrenzungsventil vorzusehen.
- ► Es gelten die folgenden Anziehdrehmomente:
 - Armaturen: Beachten Sie die Herstellerangaben zu den Anziehdrehmomenten der verwendeten Armaturen.
 - Befestigungsschrauben: Für Befestigungsschrauben mit metrischem ISO-Gewinde nach DIN 13 empfehlen wir die Überprüfung des Anziehdrehmoments im Einzelfall gemäß VDI 2230.
 - **Einschraubloch der Axialkolbeneinheit:** Die maximal zulässigen Anziehdrehmomente $M_{\rm G\ max}$ sind Maximalwerte der Einschraublöcher und dürfen nicht überschritten werden. Werte siehe nachfolgende Tabelle.
 - **Verschlussschrauben:** Für die mit der Axialkolbeneinheit mitgelieferten metallischen Verschlussschrauben gelten die erforderlichen Anziehdrehmomente der Verschlussschrauben M_V . Werte siehe nachfolgende Tabelle.

Anschlüsse		Maximal zulässiges	Erforderliches	Schlüsselweite
Norm	Gewindegröße	Anziehdrehmoment der Einschraublöcher $M_{ m G\ max}$	Anziehdrehmoment der Verschlussschrauben $M_{ m V}$	Innensechskant der Verschlussschrauben
DIN 3852 ¹⁾	M10 x 1	30 Nm	15 Nm ²⁾	5 mm
	M12 x 1.5	50 Nm	25 Nm ²⁾	6 mm
	M16 x 1.5	100 Nm	50 Nm	8 mm
	M18 x 1.5	140 Nm	60 Nm	8 mm
	M22 x 1.5	210 Nm	80 Nm	10 mm
	M27 x 2	330 Nm	135 Nm	12 mm
	M33 x 2	540 Nm	225 Nm	17 mm
	M42 x 2	720 Nm	360 Nm	22 mm
DIN ISO 228	G1 1/4	720 Nm	_	-
	G1 1/2	960 Nm	_	-
	G2	1200 Nm	_	-
	G2 1/2	2000 Nm	_	-

¹⁾ Die Anziehdrehmomente gelten für den Lieferzustand "trocken" sowie den montagebedingten "leicht geölten" Zustand der Schraube.

Bosch Rexroth AG

Mobile Applications Glockeraustraße 4 89275 Elchingen, Germany Tel. +49 7308 82-0 info.ma@boschrexroth.de www.boschrexroth.com © Alle Rechte bei Bosch Rexroth AG, auch für den Fall von Schutzrechtsanmeldungen. Jede Verfügungsbefugnis, wie Kopier- und Weitergaberecht, bei uns. Die angegebenen Daten dienen allein der Produktbeschreibung. Eine Aussage über eine bestimmte Beschaffenheit oder eine Eignung für einen bestimmten Einsatzzweck kann aus unseren Angaben nicht abgeleitet werden. Die Angaben entbinden den Verwender nicht von eigenen Beurteilungen und Prüfungen. Es ist zu beachten, dass unsere Produkte einem natürlichen Verschleiß- und Alterungsprozess unterliegen.

 $_{\rm 2)}$ Im Zustand "leicht geölt" reduziert sich $M_{\rm V}$ bei M10 x 1 auf 10 Nm und bei M12 x 1.5 auf 17 Nm.