Single Knuckle Joint

Double Knuckle Joint

| | Material: Rolled steel | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Part no. | Applicable bore | \mathbf{A}_{1} | \mathbf{L} | \mathbf{L}_{1} | $\mathbf{M M}$ |
| $\mathbf{Y - J 0 1 0 B}$ | 10 | 8 | 15.2 | 21 | $\mathrm{M} 4 \times 0.7$ |
| $\mathbf{Y - J 0 1 6 B}$ | $\mathbf{1 6}$ | 11 | 16.6 | 21 | $\mathrm{M} 5 \times 0.8$ |
| Part no. | $\mathbf{N D}_{\mathrm{d} 9}$ | $\mathbf{N D}_{\mathrm{H} 10}$ | $\mathbf{N X}$ | \mathbf{R}_{1} | \mathbf{U}_{1} |
| $\mathbf{Y - J 0 1 0 B}$ | $3.3_{-0.060}^{-0.030}$ | $3.3_{0}^{+0.048}$ | 3.2 | 8 | 10 |
| $\mathbf{Y - J 0 1 6 B}$ | $5_{-0.060}^{-0.030}$ | $5_{0}^{+0.048}$ | 6.5 | 12 | 10 |

* Knuckle pin and retaining ring are shipped together.

Clevis Pin

Mounting Nut

Knuckle Pin

* For size $\varnothing 10$, clevis pin is diverted
* Retaining rings are packaged with knuckle pins.

Rod End Nut

Material: Iron					
Part no.	Applicable bore	\mathbf{B}	\mathbf{C}	\mathbf{d}	\mathbf{H}
NTJ-010A	$\mathbf{1 0}$	$\mathbf{7}$	8.1	$\mathrm{M} 4 \times 0.7$	3.2
NTJ-015A	$\mathbf{1 6}$	8	9.2	$\mathrm{M} 5 \times 0.8$	4

T-bracket

Part no.	Applicable bore	TC	TD $_{\text {H10 }}$	TH	TK	TN	TT	TU	TV	TW	TX	TY	TZ
CJ-T010B	$\mathbf{1 0}$	4.5	$3.3^{+0.048}$	29	18	3.1	2	9	40	22	32	12	8
CJ-T016B	$\mathbf{1 6}$	5.5	$5_{0}^{+0.048}$	35	20	6.4	2.3	14	48	28	38	16	10

* T-bracket includes a T-bracket base, single knuckle joint, hexagon socket head cap screw and spring washer.

Rod End Cap

Flat type/CJ-CF $\square \square \square \quad$ Round type/CJ-CR $\square \square \square$

Material: Polyacetal

Part no.		Applicable bore	A	D	L	MM	\mathbf{N}	\mathbf{R}	\mathbf{W}
Flat type	Round type								
CJ-CF010	CJ-CR010	10	8	10	13	M4 $\times 0.7$	6	10	8
CJ-CF016	CJ-CR016	16	10	12	15	M5 $\times 0.8$	7	12	10

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

Reed auto switch <Band mounting style>

D-A9 \square

(): For D-A93 type

D-C7 $\square / C 80$

D-C73C $\square / C 80 C$

Solid state auto switch
<Band mounting style>
D-M9 \square
D-M9 \square W

D-H7 \square

D-H7C

Series CJ2X

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

Reed auto switch
<Band mounting style>
D-A9 \square

(): For D-A93 type
D-A9 \square V

D-A7■/A80

D-A7 $\square \mathrm{H} / \mathrm{A80H}$

D-A73C/A80C

D-A79W

Solid state auto switch <Band mounting style>

D-M9 \square
D-M9 \square W

D-M9 $\square V$
D-M9 \square WV

D-F7 $\square / J 79$
D-F7 \square W/J79W D-F79F

D-J79C

Low Speed Cylinder Double Acting, Single Rod

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

Auto Switch Proper Mounting Position

	Band mounting								Rail mounting											
	D-A9 \square		$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \text { W } \end{aligned}$		$\begin{aligned} & \text { D-C7 } \\ & \text { D-C80 } \\ & \text { D-C73C } \\ & \text { D-C80C } \end{aligned}$		$\begin{aligned} & \text { D-H7 } \square \\ & \text { D-H7C } \\ & \text { D-H7NF } \\ & \text { D-H7 } \square W \end{aligned}$		$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \text { V } \end{aligned}$		$\begin{aligned} & \text { D-M9 } \square \mathbf{V} \\ & \text { D-M9 } \square \mathbf{V} \\ & \text { D-M9 } \square \mathbf{W} \\ & \text { D-M9 } \square \mathbf{W V} \end{aligned}$		$\begin{aligned} & \text { D-A7■ } \\ & \text { D-A80 } \end{aligned}$		D-A7■H/A80H D-A73C/A80C D-F7口/J79 D-F7■W/J79W D-F7■V/F7口WV D-F79F D-J79C		D-F7NTL		D-A79W	
	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B
10	2	2	6	6	2.5	2.5	1.5	1.5	0.5	0.5	4.5	4.5	3	3	3.5	3.5	8.5	8.5	0.5	0.5
16	2.5	2.5	6.5	6.5	3	3	2	2	1	1	5	5	3.5	3.5	4	4	9	9	1	1

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.
Auto Switch Mounting Height

	Band mounting				Rail mounting						
	$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-M9 } \square \\ & \text { D-M9 } \square \text { W } \end{aligned}$	$\begin{aligned} & \text { D-C7■ } \\ & \text { D-C80 } \\ & \text { D-H7■ } \\ & \text { D-H7■W } \\ & \text { D-H7NF } \end{aligned}$	$\begin{aligned} & \text { D-C73C } \\ & \text { D-C80C } \end{aligned}$	D-H7C	$\begin{aligned} & \text { D-A7■ } \\ & \text { D-A80 } \end{aligned}$	$\begin{aligned} & \hline \text { D-A9 } \square \\ & \text { D-A9 } \square \text { V } \\ & \text { D-M9 } \\ & \text { D-M9 } \square V \\ & \text { D-M9 } \square \mathbf{W} \\ & \text { D-M9 } \square \mathbf{W V} \end{aligned}$	$\begin{aligned} & \text { D-A7■H/A80H } \\ & \text { D-F7■/J79 } \\ & \text { D-F7■W/J79W } \\ & \text { D-F79F } \\ & \text { D-F7NTL } \end{aligned}$	$\begin{aligned} & \text { D-A73C } \\ & \text { D-A80C } \end{aligned}$	$\begin{aligned} & \text { D-F7■V } \\ & \text { D-F7 } \square \text { WV } \end{aligned}$	D-J79C	D-A79W
	Hs										
10	16.5	17	19.5	20	16.5	17.5	17.5	23.5	20	23	19
16	20	20.5	23	23.5	19.5	21	20.5	26.5	23	26	22

Series CJ2X

Minimum Auto Switch Mounting Stroke

Auto switch mounting	Auto switch model	No. of auto switch mounted				
		1 pc.	2 pcs.		n pcs. (n: No. of auto switch)	
			Different surfaces	Same surface	Different surfaces	Same surface
Band mounting	$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-M9 } \square \\ & \text { D-M9 } \square \mathbf{W} \end{aligned}$	10	$15^{\text {Note) }}$	$45^{\text {Note) }}$	$\begin{aligned} & 15+35 \frac{(n-2)}{2} \\ & (\mathrm{n}=2,4,6 \cdots) \end{aligned}$	$45+15$ (n-2)
	$\begin{aligned} & \text { D-C7 } \\ & \text { D-C80 } \end{aligned}$	10	15	50	$\begin{aligned} & 15+40 \frac{(n-2)}{2} \\ & (\mathrm{n}=2,4,6 \cdots) \end{aligned}$	$50+20$ (n-2)
	$\begin{aligned} & \text { D-H7 } \square / H 7 \square W \\ & \text { D-H7NF } \end{aligned}$	10	15	60	$\begin{aligned} & 15+45 \frac{(n-2)}{2} \\ & (\mathrm{n}=2,4,6 \cdots) \end{aligned}$	$60+22.5(\mathrm{n}-2)$
	$\begin{aligned} & \text { D-C73C } \\ & \text { D-C80C } \\ & \text { D-H7C } \end{aligned}$	10	15	65	$\begin{aligned} & 15+50 \frac{(n-2)}{2} \\ & (n=2,4,6 \cdots) \end{aligned}$	$50+27.5(\mathrm{n}-2)$
Rail mounting	D-M9 \square V	5	-	5	-	$\begin{gathered} 10+10(n-2) \\ (n=4,6 \cdots) \end{gathered}$
	D-A9 \square V	5	-	10	-	$\begin{gathered} 10+15(\mathrm{n}-2) \\ (\mathrm{n}=4,6 \cdots) \\ \hline \end{gathered}$
	$\begin{aligned} & \hline \text { D-M9 } \square \\ & \text { D-A9 } \square \end{aligned}$	10	-	10	-	$\begin{gathered} 15+15(n-2) \\ (\mathrm{n}=4,6 \cdots) \\ \hline \end{gathered}$
	D-M9 \square WV	10	-	15	-	$\begin{gathered} 15+15(n-2) \\ (n=4,6 \cdots) \\ \hline \end{gathered}$
	D-M9 \square W	15	-	15	-	$\begin{gathered} 20+15(n-2) \\ (n=4,6 \cdots) \end{gathered}$
	$\begin{aligned} & \text { D-A7 } \square / \text { A80 } \\ & \text { D-A7 } \square H / A 80 H \\ & \text { D-A73C/A80C } \end{aligned}$	5	-	10	-	$\begin{gathered} 15+10(n-2) \\ (n=4,6 \cdots) \end{gathered}$
	$\begin{aligned} & \text { D-A7 } \square H \\ & \text { D-A80H } \end{aligned}$	5	-	10	-	$\begin{gathered} 15+15(n-2) \\ (n=4,6 \cdots) \end{gathered}$
	D-A79W	10	-	15	-	$\begin{gathered} 10+15(n-2) \\ (n=4,6 \cdots) \end{gathered}$
	$\begin{aligned} & \hline \text { D-F7 } \\ & \text { D-J79 } \end{aligned}$	5	-	5	-	$\begin{gathered} 15+15(n-2) \\ (n=4,6 \cdots) \\ \hline \end{gathered}$
	$\begin{aligned} & \text { D-F7 } \square \text { V } \\ & \text { D-J79C } \end{aligned}$	5	-	5	-	$\begin{gathered} 10+10(n-2) \\ (n=4,6 \cdots) \end{gathered}$
	$\begin{aligned} & \text { D-F7 } \square W / J 79 W \\ & \text { D-F79F } \\ & \text { D-F7NTL } \end{aligned}$	10	-	15	-	$\begin{gathered} 15+20(n-2) \\ (n=4,6 \cdots) \end{gathered}$
	D-F7 \square WV	10	-	15	-	$\begin{gathered} 10+15(n-2) \\ (n=4,6 \cdots) \end{gathered}$

Note) When 2 D-A93/M9 $\square /$ M9 \square W auto switches are included.

Operating Range

Auto switch model		Bore size (mm)	
		10	16
	D-A9 \square	6	7
	$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 W } \end{aligned}$	2.5	3
	D-C7口/C80/C73C/C80C	7	7
	$\begin{aligned} & \text { D-H7 } \square / H 7 \square W \\ & \text { D-H7NF } \end{aligned}$	4	4
	D-H7C	8	9
	D-A9 $\square /$ A9 \square V	6	6.5
	$\begin{aligned} & \text { D-M9 } \square / \text { M9 } \square \text { V } \\ & \text { D-M9 } \square \text { W/M9 } \square \text { WV } \end{aligned}$	3	3.5
	$\begin{aligned} & \text { D-A7 } \square / A 80 / A 7 H / A 80 H \\ & \text { D-A73C/A80C } \end{aligned}$	8	9
	D-A79W	11	13
	D-F7■/J79/F7■W/J79W D-F7■V/F7■WV/F79F D-J79C D-F7NTL	5	5

* Since this is a guideline including hysteresis, not meant to be guaranteed.
(Assuming approximately $\pm 30 \%$ dispersion.) There may be the case it will vary substantially depending on an ambient environment.

Auto Switch Mounting Bracket/Part No.

Auto switch mounting	Auto switch model	Bore size	
		$\varnothing 10$	$\varnothing 16$
Band mounting		Note 1), Note 2) (1) BJ2-010 (2) $B J 3-1$	Note 1), Note 2) (1)BJ2-016 (2) $\mathrm{BJ} 3-1$
	$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-M9 } \square \\ & \text { D-M9 } \square \end{aligned}$		
	$\begin{aligned} & \text { D-C7■/C80 } \\ & \text { D-C73C/C80C } \\ & \text { D-H7 } \square / H 7 \square W \\ & \text { D-H7NF } \end{aligned}$	BJ2-010	BJ2-016
Rail mounting		$\begin{gathered} \text { Note 3) } \\ \text { BQ2-012 } \end{gathered}$	$\begin{gathered} \text { Note 3) } \\ \text { BQ2-012 } \end{gathered}$
	$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \text { V } \\ & \text { D-M9 } \square \\ & \text { D-M9 } \square \text { V } \\ & \text { D-M9 } \square \text { W } \\ & \text { D-M9 } \square \mathbf{W V} \end{aligned}$	BQ2-012	

Note 1) Two kinds of auto switch mounting brackets are used as a set.
Note 2) Auto switch mounting brackets are shipped together with cylinders.
Note 3) When mounting a compact auto switch on the $\varnothing 10$ or $\varnothing 16$ rail mounting type, order auto switch mounting bracket shown in the table above. Order it separately from the cylinder.
Example
CDJ2BX10-60-A 1 unit
D-M9BWV 2 pcs.
BQ2-012 2 pcs.

Related Products: Speed Controller for Low Speed Operation

The effective area of controlled flow is approximately $1 / 10$ of the standard type.
These controllers are suitable for controlling the speed of microspeed cylinders.
The dual type speed controller is especially suitable for cylinders with a small bore size.

Elbow/Universal Type

Air Flow/Effective Area

Model		AS12 $\square 1 F M-M 5$ AS13 $\square 1 F M-M 5$	$\begin{aligned} & \text { AS22 } \square 1 F M-\square 01 \\ & \text { AS23 } \square 1 \text { FM- } \square 01 \end{aligned}$		$\begin{aligned} & \text { AS22 } \square \text { 1FM- } \square 02 \\ & \text { AS23 } \square 1 F M-\square 02 \end{aligned}$		
Tubing O.D.	Metric size	$ø 3.2, \varnothing 4, \varnothing 6$	ø3.2, ø4	ø6, ø8	$\varnothing 4$	$\varnothing 6$	ø8, ø10
	Inch size	$\begin{aligned} & \text { ब1/8", } \varnothing 5 / 32^{\prime \prime}, \varnothing 3 / 16^{\prime \prime} \\ & \varnothing 1 / 44^{\prime \prime} \end{aligned}$	ø1/8", $\varnothing 5 / 32$ "	$\begin{aligned} & \varnothing 3 / 16^{\prime \prime}, \varnothing 1 / 4^{\prime \prime} \\ & \varnothing 5 / 16^{\prime \prime} \\ & \hline \end{aligned}$	¢5/32"	ø3/16"	$\begin{aligned} & 61 / 4^{\prime \prime,}, 65 / 16^{\prime \prime} \\ & 63 / 8^{\prime \prime} \end{aligned}$
Controlled flow	Air flow (l/min (ANR))	7	12		38		
	Effective area (mm^{2})	0.1	0.2		0.6		
Free flow	Flow rate (dmin (ANR))	100	180	230	260	390	460
	Effective area (mm^{2})	1.5	2.7	3.5	4	6	7

Note) Supply pressure: 0.5 MPa , Temperature: $20^{\circ} \mathrm{C}$

In-line Type

Air Flow/Effective Area

Note) Supply pressure: 0.5 MPa , Temperature: $20^{\circ} \mathrm{C}$
Elbow Type (Metal body)

Air Flow/Effective Area

Model		AS12■0M		AS22 $\square 0 \mathrm{M}-\square 01$		AS22 \square OM- $\square 02$	
Port size	Cylinder side	M5 x 0.8	10-32 UNF	R 1/8	NPT 1/8	R 1/4	NPT 1/4
	Tube side			Rc 1/8		Rc 1/4	
Controlled flow	Air flow (l/min (ANR))	7		12		38	
	Effective area (mm^{2})	0.1		0.2		0.6	
Free flow	Flow rate (lmin (ANR))	105		280		420	
	Effective area (mm^{2})	1.6		4.3		6.5	

Note) Suppy pessurue. 0.5 wpa, Tenpeature: 20 C

REA

Dual Type

Air Flow/Effective Area

Model		$\begin{gathered} \text { ASD230FM-M5 } \\ \hline \varnothing 4, \varnothing 6 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { ASD330FM- } \square 01 \\ \hline 6, \varnothing 8 \end{gathered}$	ASD430FM- $\square 02$	
Tubing O.D.	Metric size			$ø 6$	ø8, $\varnothing 10$
	Inch size	$\begin{aligned} & \varnothing 1 / 8^{\prime \prime}, \varnothing 5 / 32 " \\ & \varnothing 3 / 16^{\prime \prime}, \varnothing 1 / 4 " \end{aligned}$	ø3/16", ø1/4"	-	$\begin{aligned} & \varnothing 1 / 4^{\prime \prime}, \varnothing 5 / 16^{\prime \prime} \\ & \varnothing 3 / 8^{\prime \prime} \end{aligned}$
Controlled flow (Free flow)	Air flow (l/min (ANR))	7	12		38
	Effective area (mm^{2})	0.1	0.2		0.6

Note) Supply pressure: 0.5 MPa , Temperature: $20^{\circ} \mathrm{C}$

REC

Low Speed Cylinder Specific Product Precautions

\triangle
Be sure to read before handling.
Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Recommended Pneumatic Circuit

. Warning
 Horizontal Operation

I

Dual speed controller

Speed is controlled by meter-out circuit. Using concurrently the meter-in circuit can alleviate the stick-slip. More stable low speed operation can be achieved than meter-in circuit alone.

Vertical Operation

I

(1) Speed is controlled by meter-out circuit. Using concurrently the meter-in circuit can alleviate the stick-slip.*
(2) Depending on the size of the load, installing a regulator with check valve at position (b) can deduce lurching during descent and operation delay during ascent.
As a guide,
when W + Poa>PoA,
adjust \mathbf{P}_{1} to make $\mathbf{W}+\mathbf{P}_{\mathbf{1}} \mathbf{a}=\mathbf{P} \mathbf{0} \mathbf{A}$.

II

Meter-in speed controller
Meter-in speed controllers can reduce lurching while controlling the speed. The two adjustment needles facilitate adjustment.

II

(1) Speed is controlled by meter-out circuit. Using concurrently the meter-in circuit can alleviate the stick-slip.*
(2) Installing a regulator with check valve at position (c) can reduce lurching during descent and operation delay during ascent.

As a guide,
adjust \mathbf{P}_{2} to make $\mathbf{W}+\mathbf{P}_{2} \mathbf{A}=\mathbf{P o a}$.
\mathbf{W} : Load (N) $\mathbf{P} \mathbf{0}$: Operating pressure (MPa) $\quad \mathbf{P} 1, \mathbf{P}_{2}$: Reduced pressure (MPa) a: Rod side piston area (mm^{2}) A: Head side piston area ($\mathrm{mm}{ }^{2}$)

© Warning

Since C $\square \mathbf{J} 2 \mathbf{X}, \mathbf{C} \square \mathbf{U X 1 0}$ are subject to internal leakage due to their construction, the speed may not be fully controlled with the meter-out controller (*) during low speed operation.

Selection

\triangle Caution

1. Operate within the standard strokes.

Operating with the stroke exceeding the standard stroke may cause malfunction.
2. Provide a construction that does not apply a lateral load to the cylinder.
Applying a lateral load to the cylinder may cause malfunction.
3. Do not use the product at a high frequency.

Use it at 30 cpm or less as a guideline.
4. Do not wipe out the grease in the sliding part of the air cylinder.
Doing so forcefully may cause malfunction.

Pneumatic Circuit

©Caution

1. The piping length between the speed controller and the cylinder port must be kept as short as possible.
If the speed controller and the cylinder port are far apart, speed adjustment may be unstable.
2. Use a low speed controller to easily adjust for low speed operation or a dual speed controller (Series ASD) to prevent cylinders from popping out.
(When the low speed controller is used, the maximum speed may be limited.)

Fine Lock Cylinders/Lock-up Cylinder

Series CL

$ø 16, \varnothing 20, \varnothing 25, \varnothing 32, \varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100, \varnothing 125, \varnothing 140, \varnothing 160$

| $\begin{array}{c}\text { Locking } \\ \text { method }\end{array}$ | $\begin{array}{c}\text { Spring } \\ \text { locking }\end{array}$ | $\begin{array}{c}\text { Pneumatic } \\ \text { locking }\end{array}$ | $\begin{array}{c}\text { Spring and } \\ \text { pneumatic locking }\end{array}$
 Features
 $\begin{array}{l}\text { - Unlocking } \\ \text { Discharging } \\ \text { the air causes } \\ \text { the lock to } \\ \text { operate. }\end{array}$ $\begin{array}{l}\text { - Pressure } \\ \text { locking } \\ \text { The holding } \\ \text { power can be } \\ \text { varied according } \\ \text { to the air } \\ \text { pressure that is } \\ \text { applied to the } \\ \text { port. }\end{array}$ |
| :---: | :--- | :--- | :--- | \(\left.\begin{array}{l}- Pressure locking

The holding power

can be varied

according to the

air pressure that is

applied to the port.

- Unlocking

Discharging the air

causes the lock to

operate.\end{array}\right]\)| |
| :--- |

Locking in both directions is possible. Locking in either side of cylinder stroke is CLJ2 possible, too. (The lock-up cylinder can be locked only in one direction.)
(Lock-up cylinders are spring locking only.)

Series Variations

Series

Fine lock cylinders
Series CLJ2

Lock-up cylinder

Standard variations	
$\begin{array}{l}\text { Auto switch } \\ \text { built-in magnet }\end{array}$	

Specific Product Precautions 1

Be sure to read before handling.
The precautions on these pages are for the fine lock cylinders and the lock-up cylinders. For general actuator precautions, refer to Actuator Precautions on pages 3 to 7.

Design of Equipment and Machinery

Warning

1. Construct so that the human body will not come into direct contact with driven objects or the moving parts of locking cylinders. If there is a risk of contact, provide safety measures such as a cover or a system that uses sensors that will activate an emergency stop before contact is made.
2. Use a balance circuit in which lurching of the piston is taken into consideration. If the lock is applied at a desired position of a stroke and compressed air is applied to only one side of the cylinder, the piston will lurch at a high speed the moment the lock is disengaged. In such a situation, there is a risk of injury to humans, or equipment damage. To prevent the piston from lurching, use a balance circuit such as the recommended pneumatic circuit (P. 598). If an air-hydro fine lock cylinder is used, make sure to operate the lock portion through air pressure. Never use oil on the lock-up cylinder because the lock-up cylinder is a non-lube style. Failure to observe this could cause the lock to malfunction.

Selection
 © Warning

Refer to the following criteria for the maximum load in the locked state, and set.

When a cylinder is in a no-load and locked state, the holding force (maximum static load) is the lock's ability to hold a static load that does not involve vibrations or shocks. To ensure braking force, the maximum load must be set as described below.

1. For constant static loads, such as for drop prevention:

- Fine lock series (Series CLJ2/CLM2/ CLG1)
35% or less of the holding force (maximum static load)
Note) For applications such as drop prevention, consider situations in which the air source is shut off, and make selections based on the holding force of the spring locked state. Do not use the pneumatic lock for drop prevention purposes.
- Lock-up series (Series CL1)
50% or less of the holding force (maximum static load)
. When kinetic energy acts upon the cylinder such as when effecting an intermediate stop, there are constraints in terms of the allowable kinetic energy that can be applied to the cylinder in a locked state Therefore, refer to the allowable kinetic energy of the respective series Furthermore, during locking, the mechanism must sustain the thrust of the cylinder itself, in addition to absorbing the kinetic energy. Therefore, even within a given allowable kinetic energy level, there is an upper limit to the amount of the load that can be sustained.
- Fine lock series (Series CLJ2/CLM2/ CLG1)
Maximum load at horizontal mounting 70% or less of the holding force (Maximum static load) for spring lock Maximum load at vertical mounting: 35\% or less of the holding force (Maximum static load) for spring lock
- Lock-up series (Series CL1)

Maximum load at horizontal mounting: 50% or less of the holding force (Maximum static load)
Maximum load at vertical mounting: 25\% or less of the holding force (Maximum static load)
3. In a locked state, do not apply impacts, strong vibrations or rotational forces.
Do not apply a impacts, strong vibrations or rotational forces from external sources, because this could damage or shorten the life of the lock unit.
4. The locking of the fine lock cylinder is directional.
Although the fine lock cylinder can be locked in both directions, be aware that its holding force is smaller in one of the directions.
CLJ2/CLM2/CLG1 \cdots. Holding force at piston rod extended side decreases approx. 15\%
5. The locking of the lock-up cylinder is unidirectional.
Because the locking direction of the lock-up cylinder is unidirectional, select the locking direction in accordance with the particular operating conditions. It is also possible to manufacture a bidirectional lock-up cylinder. For details, refer to "Made to Order" on page 1989. Due to the nature of its construction, a lock-up cylinder has a play of approximately 0.5 mm to 1 mm in the axial direction. Therefore, if an external stopper is used to stop the piston rod and the lock is engaged, the piston rod will shift in the amount of its axial play.
6. To effect an intermediate stop, take the cylinder's stopping precision and overrun amount into consideration.
Because the lock is applied by mechanical means, the piston will not stop immediately in response to a stopping signal, but only after a time lag. This lag determines the amount of the overrun of the piston stroke. Thus, the range of the maximum and minimum amounts of the overrun is the stopping precision.

- Place the limit switch before the desired stopping position, only in the amount of the overrun.
- The limit switch must have a detection length (dog length) of the overrun amount $+\alpha$.
- For SMC's auto switches, the operating range are between 8 and 14 mm . (It varies depending on a switch model.) When the overrun amount exceeds this range, self-holding of the contact should be performed at the switch load side.
* For stopping accuracy, refer to Series CLJ (P. 603), Series CLM2 (P. 614), Series CLG1 (P. 627), and Series CL1 (P. 637) respectively.

7. In order to further improve stopping accuracy, the time from the stop signal to the operation of the lock should be shortened as much as possible.
To accomplish this, use a device such as a highly responsive electric control circuit or solenoid valve driven by direct current, and place the solenoid valve as close as possible to the cylinder.
8. Be aware that the stopping accuracy is influenced by changes in the piston speed. The variance in the stopping position increases if the piston speed changes, such as due to load fluctuations during the reciprocal movement of the piston. Therefore, take measures to ensure a constant piston speed immediately preceding the stopping position. Furthermore, the variances in the stopping position increases when the piston is effecting a cushioning stroke or during acceleration after starting its movement.
9. When unlocking is performed, if the thrust is applied to the piston, unlocking will not be easily done. To avoid that, ensure that unlocking should be performed before the thrust is applied to the piston.

Series CL
Specific Product Precautions 2
Be sure to read before handling.
The precautions on these pages are for the fine lock cylinders and the lock-up cylinders. For general actuator precautions, refer to Actuator Precautions on pages 3 to 7.
Mounting
\$ Warning

1. Be certain to connect the rod end to the
load with the lock released.

- If this is performed with the lock
engaged, a load that exceeds the
allowable rotational force or holding force
would be applied to the piston rod, which
could damage the locking mechanism.
The fine lock and Series CL1 with $\varnothing 40$ to
$\varnothing 100$ cylinders have a built-in manual
unlocking mechanism. Therefore, they
can be maintained in the unlocked state
without supplying air. For Series CL1 with
$\varnothing 125$ to $\varnothing 160$ cylinders, simply connect
piping to the lock-up port, and supply air
pressure of 0.2 MPa or more to
disengage the lock in order to attach a
load.

\triangle Caution

1. Do not apply offset loads on the piston rod.

- Pay particular attention to aligning the center of gravity of the load with the axial center of the cylinder. If there is a large amount of deviation, the piston rod could become unevenly worn or damaged due to the inertial moment that is created when the piston rod is stopped by the lock.

X Load center of gravity and cylinder shaft center are not matched.

O Load center of gravity and cylinder shaft center are matched.

Note) Can be used if all of the generated moment is absorbed by an effective guide

Adjustment
\bigwedge Caution

1. Place it in the locked position. (Excluding the series CL1 ø125 to ø160.)

- The locks are manually disengaged at the time the cylinders are shipped from the factory. Therefore, make sure to change them to the locked state before using the cylinders. For procedures to effect the change, refer to page 599 for the fine lock series. Be aware that the lock will not operate properly if the change is not performed correctly.
- Adjust the cylinder's air balance. In the state in which a load is attached to the cylinder, disengage the lock and adjust the air pressure at the rod side and the head side of the cylinder to obtain a load balance. By maintaining a proper air balance, the piston rod can be prevented from lurching when the lock is disengaged.

2. Adjust the mounting position of detections such as those of the auto switches. To effect an intermediate stop, adjust the mounting position of the auto switch detection by taking the amount of overrun into consideration in relation to the desired stopping position

CLJ2

CLIM2

CLG1

CL1

